Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Hum Vaccin Immunother ; 20(1): 2352916, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38744298

RESUMEN

Healthcare providers (HCPs) are recommended for priority influenza vaccination due to their high risk of contracting influenza. HCPs greatly aid in targeted population immunization campaigns. Therefore, understanding the factors that influence HCPs' decisions to get vaccinated and to recommend influenza vaccination is essential. However, there currently needs to be more evidence on this topic in China. Qualitative interviews using a semi-structured interview method were conducted with 180 HCPs from urban community hospitals and town hospitals in four cities in Shandong Province during August 2023. The interview content was analyzed using thematic analysis to identify the variables impacting the vaccination and recommendation practices of HCPs, as well as their suggestions for improving vaccination services. The results will help support the future development of precise intervention measures as well as focused education and training.


Asunto(s)
Personal de Salud , Vacunas contra la Influenza , Gripe Humana , Investigación Cualitativa , Vacunación , Humanos , Vacunas contra la Influenza/administración & dosificación , China , Gripe Humana/prevención & control , Femenino , Masculino , Vacunación/psicología , Vacunación/estadística & datos numéricos , Adulto , Persona de Mediana Edad , Actitud del Personal de Salud , Conocimientos, Actitudes y Práctica en Salud , Entrevistas como Asunto , Programas de Inmunización , Aceptación de la Atención de Salud/psicología
2.
J Med Virol ; 96(5): e29640, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38699969

RESUMEN

After the termination of zero-COVID-19 policy, the populace in China has experienced both Omicron BA.5 and XBB waves. Considering the poor antibody responses and severe outcomes observed among the elderly following infection, we conducted a longitudinal investigation to examine the epidemiological characteristics and antibody kinetics among 107 boosted elderly participants following the Omicron BA.5 and XBB waves. We observed that 96 participants (89.7%) were infected with Omicron BA.5, while 59 (55.1%) participants were infected with Omicron XBB. Notably, 52 participants (48.6%) experienced dual infections of both Omicron BA.5 and XBB. The proportion of symptomatic cases appeared to decrease following the XBB wave (18.6%) compared to that after the BA.5 wave (59.3%). Omicron BA.5 breakthrough infection induced lower neutralizing antibody titers against XBB.1.5, BA.2.86, and JN.1, while reinfection with Omicron XBB broadened the antibody responses against all measured Omicron subvariants and may alleviate the wild type-vaccination induced immune imprinting. Boosted vaccination type and comorbidities were the significant factors associated with antibody responses. Updated vaccines based on emerging severe acute respiratory syndrome coronavirus 2 variants are needed to control the Coronavirus Disease 2019 pandemic in the elderly.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infección Irruptiva , Vacunas contra la COVID-19 , COVID-19 , Inmunización Secundaria , SARS-CoV-2 , Humanos , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/epidemiología , China/epidemiología , Anciano , Anticuerpos Antivirales/sangre , Masculino , Femenino , Anticuerpos Neutralizantes/sangre , SARS-CoV-2/inmunología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Anciano de 80 o más Años , Persona de Mediana Edad , Estudios Longitudinales , Vacunación
3.
Plant Dis ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568844

RESUMEN

Tobacco (Nicotiana tabacum L.) belongs to the family Solanaceae, an economically significant crop (Zhou et al. 2023). Twelve samples with leaf spots were collected in Keti Village, Changshun County, Zunyi City, Guizhou province, China in 2022. Twenty-five percent of the samples had dry lesions near the leaf tip which resulted leaf tip blight after development. Fungi were isolated by a previous method (Wei et al. 2022). Six Alternaria strains were obtained and preserved in the Fungal Herbarium of Yangtze University (YZU), Jingzhou, Hubei, China. Among them, one strain YZU 221477 showed distinct cultural characteristics out of five A. alternata strains, which was again determined by growing on potato dextrose agar (PDA) at 25°C for 7 days in dark to evaluate. The colonies (60 mm in diameter) were white cottony in the center surrounded by vinaceous purple. To examine the morphology, mycelia were inoculated onto potato carrot agar (PCA) at 22°C, following an 8 h light/16 h dark photoperiod (Simmons 2007). Conidia were obclavate or ovoid, normally 3-5 conidial units per chain, 20-38 × 10-16.5 µm, 3 to 5 transverse septa, beakless or a short beak (4-30 µm). The observation results were consistent with those of A. gossypina (Zhang 2003). Total genomic DNA was extracted using the CTAB method and seven gene regions including internal transcribed spacer of rDNA (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), translation elongation factor 1 alpha (TEF1), RNA polymerase second largest subunit (RPB2), Alternaria major allergen gene (Alt a 1), endopolygalacturonase (EndoPG) and an anonymous gene region (OPA10-2) were amplified with ITS5/ITS4, gpd1/gpd2, EF1-728F/EF1-986R, RPB2-5F/RPB2-7cR, Alt-for/Alt-rev, PG3/PG2b and OPA10-2L/OPA10-2R primers, respectively. All sequences were deposited in GenBank (ITS: OR710806; GAPDH: PP057862; TEF1: PP158601; RPB2: PP057863; Alt a 1: PP057865; EndoPG: PP057861; OPA10-2: PP057864). Combining with relevant sequences retrieved from the NCBI database were used for the phylogenetic analysis. Maximum Likelihood (ML) tree was constructed with RAxML v.7.2.8 employing GTRCAT model using 1000 bootstrap (BS) replicates to assess statistical support. The results indicated that the present strain grouped with A. gossypina (type strain of CBS 104.32) supported with 73% bootstrap values, also having a support of 0.83 Bayesian posterior probabilities values. Based on morphology and molecular evidence, the strain YZU 221477 is identified as Alternaria gossypina. Pathogenicity was examined to fulfill Koch's postulates. Mycelial plugs (6 mm diameter) of the present strain and A. alternata cultivated on PDA were taken from the margin and inoculated onto viable tobacco leaves (Cultivar: Yunyan 87, n=3) growing forty days, while controls were inoculated with sterile PDA. The assay was conducted three times. The plants were maintained at 25°C with humidity levels over 85% in a greenhouse. Leaves were evaluated after 7 days, necrotic spots encircled by yellow halos were on both inoculums, except controls. Pathogen re-isolation confirmed that it was the same as inoculated fungus based on morphology. A. gossypina was firstly found on cotton (Hopkins 1931), late reported to induce disease on Minneola, Nopalea, Hibiscus, Citrus, Solanum and Ageratina. To our knowledge, this is the first report of A. gossypina causing tobacco leaf tip blight in China, and it also provides a basis for controlling of tobacco leaf tip blight.

4.
Vaccines (Basel) ; 12(3)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38543956

RESUMEN

This study explored the optimum immunization schedule for the quadrivalent influenza split-virion vaccine containing influenza A strains (H1N1 and H3N2) and B lineage strains (Yamagata and Victoria) in children aged 3-8 years. The 652 participants enrolled were divided into two groups based on a history of influenza immunization (IH group) or no history of influenza immunization (NH group). The groups were administered a two-dose immunization schedule on days 0 and 30. In the NH group, on day 30 after the first dose, the positive rates of influenza hemagglutination-inhibition antibodies of strains H1N1, H3N2, BV, and BY were 85.85%, 71.70%, 65.27% and 60.45%, respectively. The positive rates of BV and BY failed to meet the absolute criteria for evaluating the immunogenicity of influenza vaccine in the population aged 3-60 years (for each strain antibody). On day 30 after the second dose, HI antibodies to strains H1N1, H3N2, BV, and BY met the immunogenicity acceptable criteria. In the IH group, on day 30 after the first dose, HI antibodies to strains H1N1, H3N2, BV, and BY met the acceptable criteria for immunogenicity. The incidence rates of adverse reactions (vaccine-related adverse events) from the first dose up until 30 days after the second dose were 20.80% in the IH group and 19.50% in the NH group. Only two Grade 3 adverse reactions (fever: temperature ≥ 39.5 °C, swelling: area ≥ 50% of the injection site area) occurred in the IH group, and no Grade 3 adverse reactions occurred in the NH group. No serious adverse reactions occurred in either group. We conclude that for the NH group, two doses of quadrivalent influenza vaccine should be administered, and for the IH group, a one-dose regimen is acceptable.

5.
BMC Biol ; 21(1): 208, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798721

RESUMEN

BACKGROUND: Domestication and introduction of dairy animals facilitated the permanent human occupation of the Tibetan Plateau. Yet the history of dairy pastoralism in the Tibetan Plateau remains poorly understood. Little is known how Tibetans adapted to milk and dairy products. RESULTS: We integrated archeological evidence and genetic analysis to show the picture that the dairy ruminants, together with dogs, were introduced from West Eurasia into the Tibetan Plateau since ~ 3600 years ago. The genetic admixture between the exotic and indigenous dogs enriched the candidate lactase persistence (LP) allele 10974A > G of West Eurasian origin in Tibetan dogs. In vitro experiments demonstrate that - 13838G > A functions as a LP allele in Tibetans. Unlike multiple LP alleles presenting selective signatures in West Eurasians and South Asians, the de novo origin of Tibetan-specific LP allele - 13838G > A with low frequency (~ 6-7%) and absence of selection corresponds - 13910C > T in pastoralists across eastern Eurasia steppe. CONCLUSIONS: Results depict a novel scenario of genetic and cultural adaptations to diet and expand current understanding of the establishment of dairy pastoralism in the Tibetan Plateau.


Asunto(s)
Crianza de Animales Domésticos , Pueblo Asiatico , Dieta , Leche , Animales , Perros/genética , Humanos , Tibet , Rumiantes
6.
Front Plant Sci ; 14: 1199956, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37828924

RESUMEN

Epicoccum latusicollum is a fungus that causes a severe foliar disease on flue-cured tobacco in southwest China, resulting in significant losses in tobacco yield and quality. To better understand the organism, researchers investigated its optimal growth conditions and metabolic versatility using a combination of traditional methods and the Biolog Phenotype MicroArray technique. The study found that E. latusicollum exhibited impressive metabolic versatility, being able to metabolize a majority of carbon, nitrogen, sulfur, and phosphorus sources tested, as well as adapt to different environmental conditions, including broad pH ranges and various osmolytes. The optimal medium for mycelial growth was alkyl ester agar medium, while oatmeal agar medium was optimal for sporulation, and the optimum temperature for mycelial growth was 25°C. The lethal temperature was 40°C. The study also identified arbutin and amygdalin as optimal carbon sources and Ala-Asp and Ala-Glu as optimal nitrogen sources for E. latusicollum. Furthermore, the genome of E. latusicollum strain T41 was sequenced using Illumina HiSeq and Pacific Biosciences technologies, with 10,821 genes predicted using Nonredundant, Gene Ontology, Clusters of Orthologous Groups, Kyoto Encyclopedia of Genes and Genomes, and SWISS-PROT databases. Analysis of the metabolic functions of phyllosphere microorganisms on diseased tobacco leaves affected by E. latusicollum using the Biolog Eco microplate revealed an inability to efficiently metabolize a total of 29 carbon sources, with only tween 40 showing some metabolizing ability. The study provides new insights into the structure and function of phyllosphere microbiota and highlights important challenges for future research, as well as a theoretical basis for the integrated control and breeding for disease resistance of tobacco Epicoccus leaf spot. This information can be useful in developing new strategies for disease control and management, as well as enhancing crop productivity and quality.

8.
Sci Prog ; 106(2): 368504231172667, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37163742

RESUMEN

The replacement of humans by machines has gradually become a technological trend. In this study, a dual robotic arm was used in the belt conveyor operation system to track the screw and nut assembly using mutual visual tracking and positioning technology. Moreover, this study simulated the automatic assembly process using a dual robotic arm in a smart factory. An inverse kinematics operation was constructed using a geometric method to control the dual robotic arm to track the screw and nut assembly on the conveyor belt in real time using mutual visual tracking and positioning technology based on a single-lens charge-coupled device of a robotic arm. This study utilized a dual robotic arm to grab the screw and nut using fuzzy visual tracking control. After completing the grabbing of the screw and nut with tracking and positioning errors of 8%, the dual robotic arms continued to complete the assembly of the screw and nut. Therefore, through the establishment technology of mutual visual tracking and positioning of the dual robotic arm in this study, assembly tasks can be efficiently completed in related fields in the future.

9.
Front Microbiol ; 14: 1158163, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37032875

RESUMEN

Introduction: The ongoing 2019 coronavirus disease pandemic (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its variants, is a global public health threat. Early diagnosis and identification of SARS-CoV-2 and its variants plays a critical role in COVID-19 prevention and control. Currently, the most widely used technique to detect SARS-CoV-2 is quantitative reverse transcription real-time quantitative PCR (RT-qPCR), which takes nearly 1 hour and should be performed by experienced personnel to ensure the accuracy of results. Therefore, the development of a nucleic acid detection kit with higher sensitivity, faster detection and greater accuracy is important. Methods: Here, we optimized the system components and reaction conditions of our previous detection approach by using RT-RAA and Cas12b. Results: We developed a Cas12b-assisted one-pot detection platform (CDetection.v2) that allows rapid detection of SARS-CoV-2 in 30 minutes. This platform was able to detect up to 5,000 copies/ml of SARS-CoV-2 without cross-reactivity with other viruses. Moreover, the sensitivity of this CRISPR system was comparable to that of RT-qPCR when tested on 120 clinical samples. Discussion: The CDetection.v2 provides a novel one-pot detection approach based on the integration of RT-RAA and CRISPR/Cas12b for detecting SARS-CoV-2 and screening of large-scale clinical samples, offering a more efficient strategy for detecting various types of viruses.

10.
J Exp Bot ; 74(10): 3019-3032, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-36879436

RESUMEN

Leaf rust, caused by the fungal pathogen Puccinia triticina (Pt), is one of the major and dangerous diseases of wheat, and has caused serious yield loss of wheat worldwide. Here, we investigated adult-plant resistance (APR) to leaf rust in a recombinant inbred line (RIL) population derived from 'Xinmai 26' and 'Zhoumai 22' over 3 years. Linkage mapping for APR to leaf rust revealed four quantitative trait loci (QTL) in this RIL population. Two QTL, QLr.hnau-2BS and QLr.hnau-3BS were contributed by 'Zhoumai22', whereas QLr.hnau-2DS and QLr.hnau-5AL were contributed by 'Xinmai 26'. The QLr.hnau-2BS covering a race-specific resistance gene Lr13 showed the most stable APR to leaf rust. Overexpression of Lr13 significantly increased APR to leaf rust. Interestingly, we found that a CNL(coiled coil-nucleotide-binding site-leucine-rich repeat)-like gene, TaCN, in QLr.hnau-2BS completely co-segregated with leaf rust resistance. The resistant haplotype TaCN-R possessed half the sequence of the coiled-coil domain of TaCN protein. Lr13 strongly interacted with TaCN-R, but did not interact with the full-length TaCN (TaCN-S). In addition, TaCN-R was significantly induced after Pt inoculation and changed the sub-cellular localization of Lr13 after interaction. Therefore, we hypothesized that TaCN-R mediated leaf rust resistance possibly by interacting with Lr13. This study provides important QTL for APR to leaf rust, and new insights into understanding how a CNL gene modulates disease resistance in common wheat.


Asunto(s)
Basidiomycota , Sitios de Carácter Cuantitativo , Sitios de Carácter Cuantitativo/genética , Triticum/genética , Triticum/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Mapeo Cromosómico , Resistencia a la Enfermedad/genética
11.
Microbiol Spectr ; : e0463222, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36916974

RESUMEN

SARS-CoV-2 Omicron caused a large wave of COVID-19 cases in China in spring 2022. Shandong was one of the most affected regions during this epidemic yet was also among those areas that were able to quickly contain the transmission. We aimed to investigate the origin, genetic diversity, and transmission patterns of the Omicron epidemic in Shandong under a dynamic clearance strategy. We generated 1,149 Omicron sequences, performed phylogenetic analysis, and interpreted results in the context of available epidemiological information. We observed that there were multiple introductions of distinct Omicron sublineages into Shandong from foreign countries and other regions in China, while a small number of introductions led to majority of local cases. We found evidence suggesting that some local clusters were potentially associated with foreign imported cases. Superspreading events and cryptic transmissions contributed to the rapid spread of this epidemic. We identified a BA.1.1 genome with the R493Q reversion mutation in the spike receptor binding domain, potentially associated with an escape from vaccine and Omicron infection elicited neutralizing immunity. Our findings illustrated how the dynamic clearance strategy constrained this epidemic's size, duration, and geographical distribution. IMPORTANCE Starting in March 2022, the Omicron epidemic caused a large wave of COVID-19 cases in China. Shandong was one of the most affected regions during this epidemic but was also among those areas that were able to quickly contain the transmission. We investigated the origin, genetic diversity, and transmission patterns of Omicron epidemic in Shandong under a dynamic clearance strategy. We found that there were multiple introductions of distinct Omicron sublineages into Shandong from foreign countries and other regions in China, while a small number of introductions led to most local cases. We found evidence suggesting that some local clusters were associated with foreign imported cases. Superspreading events and cryptic transmissions contributed to the rapid spread of this epidemic. Our study illustrated the transmission patterns of Omicron epidemic in Shandong and provided a looking glass onto this epidemic in China.

12.
Front Microbiol ; 13: 1068158, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466663

RESUMEN

In recent years, STROBY (50% Kresoxim-methyl) has been widely used to control tobacco brown spot in Guizhou Province, China. As a broad-spectrum fungicide, STROBY targets not only phytopathogens, but also affects many other microorganisms including those pathogenic, beneficial, or neutral to the plant hosts. To understand the effects of STROBY on the phyllosphere microbial communities of tobacco leaves during the development of tobacco brown spot, the fungal and bacterial communities of symptomatic and asymptomatic leaves at four time points, before spraying (August 29) and after spraying (September 3, 8, and 13), were investigated using the Illumina high-throughput sequencing. The results showed that STROBY had significant effects on the phyllosphere microbial communities of tobacco leaves. Microbial communities in asymptomatic leaves were more greatly affected than their counterparts in symptomatic leaves, and fungal communities were more sensitive than bacterial communities. Throughout the experiment, the most common genera in symptomatic leaves were Alternaria, Pseudomonas, Pantoea, and Sphingomonas, and in asymptomatic leaves, these were Golubevia and Pantoea. After spraying, the alpha diversity of fungal communities increased in symptomatic leaves and decreased in asymptomatic leaves, while the alpha diversity of bacteria increased in both types of leaves. Beta diversity showed that in asymptomatic leaves, the fungal communities in the first stage was significantly different from the remaining three stages. In contrast, the fungal communities in symptomatic leaves and the bacterial communities in all leaves did not fluctuate significantly during the four stages. Before spraying (August 29), the dominant functions of the fungal community were animal pathogen, endophyte, plant pathogen, and wood saprotroph. Whereas after spraying (September 3, 8, and 13), the proportion of the above fungal functions decreased and the unassigned functions increased, especially in asymptomatic leaves. This study describes the effects of STROBY application and tobacco brown spot presence in shaping the leaf phyllosphere microbial communities, and provides insights into the microbial community effects on tobacco leaves of a strobilurin fungicide.

13.
Front Microbiol ; 13: 1030545, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36406436

RESUMEN

Avian influenza viruses (AIVs) seriously affect the poultry industry and pose a great threat to humans. Timely surveillance of AIVs is the basis for preparedness of the virus. This study reported the long-term surveillance of AIVs in the live bird market (LBM) of 16 cities in Shandong province from 2013 to 2019. A total of 29,895 samples were obtained and the overall positive rate of AIVs was 9.7%. The H9 was found to be the most predominant subtype in most of the time and contributed most to the monthly positve rate of AIVs as supported by the univariate and multivariate analysis, while H5 and H7 only circulated in some short periods. Then, the whole-genome sequences of 62 representative H9N2 viruses including one human isolate from a 7-year-old boy in were determined and they were genetically similar to each other with the median pairwise sequence identities ranging from 0.96 to 0.98 for all segments. The newly sequenced viruses were most similar to viruses isolated in chickens in mainland China, especially the provinces in Eastern China. Phylogenetic analysis showed that these newly sequenced H9N2 viruses belonged to the same clade for all segments except PB1. Nearly all of these viruses belonged to the G57 genotype which has dominated in China since 2010. Finally, several molecular markers associated with human adaptation, mammalian virulence, and drug resistance were identified in the newly sequenced H9N2 viruses. Overall, the study deepens our understanding of the epidemic and evolution of AIVs and provides a basis for effective control of AIVs in China.

14.
Front Microbiol ; 13: 920109, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966692

RESUMEN

Phyllospheric microbial composition of tobacco (Nicotiana tabacum L.) is contingent upon certain factors, such as the growth stage of the plant, leaf position, and cultivar and its geographical location, which influence, either directly or indirectly, the growth, overall health, and production of the tobacco plant. To better understand the spatiotemporal variation of the community and the divergence of phyllospheric microflora, procured from healthy and diseased tobacco leaves infected by Alternaria alternata, the current study employed microbe culturing, high-throughput technique, and BIOLOG ECO. Microbe culturing resulted in the isolation of 153 culturable fungal isolates belonging to 33 genera and 99 bacterial isolates belonging to 15 genera. High-throughput sequencing revealed that the phyllosphere of tobacco was dominantly colonized by Ascomycota and Proteobacteria, whereas, the most abundant fungal and bacterial genera were Alternaria and Pseudomonas. The relative abundance of Alternaria increased in the upper and middle healthy groups from the first collection time to the third, whereas, the relative abundance of Pseudomonas, Sphingomonas, and Methylobacterium from the same positions increased during gradual leaf aging. Non-metric multi-dimensional scaling (NMDs) showed clustering of fungal communities in healthy samples, while bacterial communities of all diseased and healthy groups were found scattered. FUNGuild analysis, from the first collection stage to the third one in both groups, indicated an increase in the relative abundance of Pathotroph-Saprotroph, Pathotroph-Saprotroph-Symbiotroph, and Pathotroph-Symbiotroph. Inclusive of all samples, as per the PICRUSt analysis, the predominant pathway was metabolism function accounting for 50.03%. The average values of omnilog units (OUs) showed relatively higher utilization rates of carbon sources by the microbial flora of healthy leaves. According to the analysis of genus abundances, leaf growth and leaf position were the important drivers of change in structuring the microbial communities. The current findings revealed the complex ecological dynamics that occur in the phyllospheric microbial communities over the course of a spatiotemporal varying environment with the development of tobacco brown spots, highlighting the importance of community succession.

15.
Front Microbiol ; 13: 843389, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572673

RESUMEN

In the tobacco phyllosphere, some of the microbes may have detrimental effects on plant health, while many may be neutral or even beneficial. Some cannot be cultivated, so culture-independent methods are needed to explore microbial diversity. In this study, both metagenetic analysis and traditional culture-dependent methods were used on asymptomatic healthy leaves and symptomatic diseased leaves of tobacco plants. In the culture-independent analysis, asymptomatic leaves had higher microbial diversity and richness than symptomatic leaves. Both asymptomatic and symptomatic leaves contained several potentially pathogenic bacterial and fungal genera. The putative bacterial pathogens, such as species of Pseudomonas, Pantoea, or Ralstonia, and putative fungal pathogens, such as species of Phoma, Cladosporium, Alternaria, Fusarium, Corynespora, and Epicoccum, had a higher relative abundance in symptomatic leaves than asymptomatic leaves. FUNGuild analysis indicated that the foliar fungal community also included endophytes, saprotrophs, epiphytes, parasites, and endosymbionts. PICRUSt analysis showed that the dominant functions of the bacterial community in a symptomatic leaf were cellular processes and environmental information processing. In the other five foliar samples, the dominant functions of the bacterial community were genetic information processing, metabolism, and organismal systems. In the traditional culture-dependent method, 47 fungal strains were isolated from 60 symptomatic tobacco leaf fragments bearing leaf spots. Among them, 21 strains of Colletotrichum (29%), Xylariaceae (14%), Corynespora (14%), Pestalotiopsis (10%), Alternaria (10%), Epicoccum (10%), Byssosphaeria (5%), Phoma (5%), and Diaporthe (5%) all fulfilled Koch's postulates and were found to cause disease on detached tobacco leaves in artificial inoculation tests. Symptoms on detached leaves caused by three strains of Corynespora cassiicola in artificial inoculation tests were similar to the original disease symptoms in the tobacco field. This study showed that the combined application of culture-dependent and independent methods could give comprehensive insights into microbial composition that each method alone did not reveal.

16.
Influenza Other Respir Viruses ; 16(3): 594-603, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35014171

RESUMEN

BACKGROUND: Understanding the influenza-like illness (ILI) incidence, circulation pattern of virus strains and spatiotemporal pattern of influenza transmission are important for designing control interventions. Based on the 10 years' surveillance data, we aimed to provide a baseline characterization and the epidemiology and dynamics of influenza virus in Shandong. METHODS: We extracted surveillance and laboratory testing data. We estimated the ILI incidence and analyzed the predominant virus. A wavelet power analysis was used to illustrate the periodicity. In addition, we applied a linear regression model to characterize the correlation of influenza seasonality with longitude. RESULTS: The average ILI incidence was estimated to be 3744.79 per 1 million (95% confidence interval [CI]: 2558.09-4931.45) during 2009-2018. Influenza A/H1N1 and A/H3N2 strains predominated in the most influenza seasons in Shandong. The annual amplitude of influenza epidemics decreased with longitude (P < 0.05). In contrast, the epidemic peak of influenza emerged earlier in the western region and increased with longitude in influenza A (P < 0.05). The annual peak of the influenza B epidemic lagged a median of 4.2 weeks compared with that of influenza A. CONCLUSIONS: The development or modification of seasonal influenza vaccination strategies requires the recognition that the incidence is higher in preschool- and school-aged children. Although seasonal influenza circulates annually in Shandong, the predominant virus strain circulation pattern is extremely unpredictable and strengthening surveillance for the predominant virus strain is necessary. Lower longitude inland regions need to take nonpharmaceutical or pharmaceutical interventions in advance during influenza high-occurrence seasons.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Niño , Preescolar , China/epidemiología , Humanos , Incidencia , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Estudios Retrospectivos , Estaciones del Año , Análisis Espacio-Temporal
17.
Front Microbiol ; 13: 1031023, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36687611

RESUMEN

Rhizopus oryzae is a destructive pathogen that frequently causes tobacco pole rot in curing chambers. Phenotypic characterization of the pathogen was conducted to provide basic biological and pathological information using Biolog Phenotype MicroArray (PM). In addition, the Y5 strain of R. oryzae was sequenced using Illumina HiSeq and Pacific Biosciences (PacBio) technologies. Using PM plates 1-8, 758 growth conditions were tested. Results indicated that R. oryzae could metabolize 54.21% of tested carbon sources, 86.84% of nitrogen sources, 100% of sulfur sources, and 98.31% of phosphorus sources. About 37 carbon compounds, including D-xylose, N-acetyl-D-glucosamine, D-sorbitol, ß-methyl-D-glucoside, D-galactose, L-arabinose, and D-cellobiose, significantly supported the growth of the pathogen. PM 3 indicated the active nitrogen sources, including Gly-Asn, Ala-Asp., Ala-Gln, and uric acid. PM 6-8 showed 285 different nitrogen pathways, indicating that different combinations of different amino acids support the growth of the pathogen. Genome sequencing results showed that the R. oryzae Y5 strain had raw data assembled into 2,271 Mbp with an N50 value of 10,563 bp. A genome sequence of 50.3 Mb was polished and assembled into 53 contigs with an N50 length of 1,785,794 bp, maximum contig length of 3,223,184 bp, and a sum of contig lengths of 51,182,778 bp. A total of 12,680 protein-coding genes were predicted using the Nonredundant, Gene Ontology, Clusters of Orthologous Groups, Kyoto Encyclopedia of Genes and Genomes, and SWISS-PROT databases. The genome sequence and annotation resources of R. oryzae provided a reference for studying its biological characteristics, trait-specific genes, pathogen-host interaction, pathogen evolution, and population genetic diversity. The phenomics and genome of R. oryzae will provide insights into microfungal biology, pathogen evolution, and the genetic diversity of epidemics.

18.
Front Public Health ; 10: 1095436, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699880

RESUMEN

Background: The associations between ambient temperature and influenza-like illness (ILI) have been investigated in previous studies. However, they have inconsistent results. The purpose of this study was to estimate the effect of ambient temperature on ILI in Shandong Province, China. Methods: Weekly ILI surveillance and meteorological data over 2014-2017 of the Shandong Province were collected from the Shandong Center for Disease Control and Prevention and the China Meteorological Data Service Center, respectively. A distributed lag non-linear model was adopted to estimate the city-specific temperature-ILI relationships, which were used to pool the regional-level and provincial-level estimates through a multivariate meta-analysis. Results: There were 911,743 ILI cases reported in the study area between 2014 and 2017. The risk of ILI increased with decreasing weekly ambient temperature at the provincial level, and the effect was statistically significant when the temperature was <-1.5°C (RR = 1.24, 95% CI: 1.00-1.54). We found that the relationship between temperature and ILI showed an L-shaped curve at the regional level, except for Southern Shandong (S-shaped). The risk of ILI was influenced by cold, with significant lags from 2.5 to 3 weeks, and no significant effect of heat on ILI was found. Conclusion: Our findings confirm that low temperatures significantly increased the risk of ILI in the study area. In addition, the cold effect of ambient temperature may cause more risk of ILI than the hot effect. The findings have significant implications for developing strategies to control ILI and respond to climate change.


Asunto(s)
Gripe Humana , Humanos , Temperatura , Gripe Humana/epidemiología , Calor , Ciudades , China/epidemiología
19.
Front Microbiol ; 12: 699699, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721315

RESUMEN

A Myriad of biotic and abiotic factors inevitably affects the growth and production of tobacco (Nicotiana tabacum L.), which is a model crop and sought-after worldwide for its foliage. Among the various impacts the level of disease severity poses on plants, the influence on the dynamics of phyllospheric microbial diversity is of utmost importance. In China, recurring reports of a phyto-pathogen, Didymella segeticola, a causal agent of tobacco leaf spot, accentuate the need for its in-depth investigation. Here, a high-throughput sequencing technique, IonS5TMXL was employed to analyze tobacco leaves infected by D. segeticola at different disease severity levels, ranging from T1G (least disease index) to T4G (highest disease index), in an attempt to explore the composition and diversity of phyllospheric microbiota. In all healthy and diseased tobacco leaves, the most dominant fungal phylum was Ascomycota with a high prevalence of genus Didymella, followed by Boeremia, Meyerozyma and Alternaria, whereas in the case of bacterial phyla, Proteobacteria was prominent with Pseudomonas being a predominant genus, followed by Pantoea. The relative abundance of fungi, i.e., Didymella and Boeremia (Ascomycota) and bacteria, i.e., Pseudomonas and Pantoea (Proteobacteria) were higher in diseased groups compared to healthy groups. Healthy tissues exhibited relatively rich and diverse fungal communities in contrast with diseased groups. The infection of D. segeticola had a complex and significant effect on fungal as well as bacterial alpha diversity. FUNGuild analysis indicated that the relative abundance of pathotrophs and saprotrophs in diseased tissues proportionally increased with disease severity. PICRUSt analysis of diseased tissues indicated that the relative abundance of bacterial cell motility and membrane transport-related gene sequences elevated with an increase in disease severity from T1G to T3G and then tended to decrease at T4G. Conclusively, the current study shows the typical characteristics of the tobacco leaf microbiome and provides insights into the distinct microbiome shifts on tobacco leaves infected by D. segeticola.

20.
Plant Dis ; 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33428450

RESUMEN

Flue-cured tobacco (Nicotiana tabacum L.) is a leafy, annual, solanaceous plant grown commercially for its leaves in China. Around 70% of tobacco production in China occurs in southwest China. In summer of 2019, leaf spot symptoms were observed on ten to twenty percent of tobacco plants in a 2 ha commercial field of Bijie (27.32° N, 105.29° E), Guizhou province, China. The leaf spots were white with dark-brown in edges, irregularly round and oval, and diseased tissue dropped out leaving the leaves ragged in appearance (Fig. 1A, 1B). One diseased leaf from each of five plants was sampled. From five leaves, a total of 15 small (5 mm × 5 mm) pieces of leaf tissue were cut from the edge of the lesions after surface sterilization and placed on potato dextrose agar (PDA) medium. Five fungal colonies that were similar in appearance were isolated and one was purified, BEZ22, was selected arbitrarily for identification. Mycelia of the pathogen was initally white and dense, and then black carbonized mycelia appeared from the center of the colony 7 days' after incubation. Mycelia was white, sparse and radiated when incubated on OA (oatmeal agar) (Fig. 1E, 1F, 1G, 1H). Genomic DNA of the isolate was extracted. The internal transcribed spacers (ITS) with primers ITS1/ITS4 (White et al. 1990), actin (ACT) gene with primers ACT-512F/ACT-738R (Hsieh et al. 2005), beta-tubulin (TUB2) with primers T1/T22 (O'Donnell & Cigelnik 1997) and RNA polymerase II second largest subunit gene (RPB2) with primers fRPB2-5F/ fRPB2-7cR (Liu et al. 1999) were amplified and sequenced, respectively. The generated sequences were deposited in GenBank with accession numbers MT804353 (ITS), MT809582 (ACT), MT799790 (TUB2) and MT799789 (RPB2). Using BLASTN searches, the sequences of each gene above were aligned with the voucher specimum, Xylaria arbuscula 89041211. The number of nucleotides that were similar for ITS (GU300090) was 550/551 (99%); for ACT (GQ421286), 266/266 bp (100%); for TUB2 (GQ478226), 1501/1501 bp (100%); and for RPB2 (GQ844805), 1135/1135 bp (100%), respectively (Fig. 2). A phylogenetic tree was constructed based on these four sequences with a final alignment of 3456 characters (ITS 551, ACT 266, TUB2 1501 and RPB2 1138). Thus, based on morphological and phylogenetic analyses, the isolate BEZ22 was identified as Xylaria arbuscula. To verify pathogenicity, six tobacco plants at seedling stage (5-6 leaves) without visible disease were inoculated using mycelial plugs (5 mm in diameter). Leaves inoculated with PDA only plugs served as controls. After inoculation, all tobacco plants were maintained in a greenhouse with 85% relative humidity at 25 oC under a 12/12 h light/dark cycle. Five days after inoculation, typical early symptoms were observed on the inoculated leaves, and not on the control leaves. Koch's postulates were fulfilled by re-isolation of the pathogen from diseased leaves. Xylaria arbuscula has also been reported as a pathogen of Macadamia in Hawaii (Wenhsiung et al. 2009) and sugarcane in Indonesia (Maryono et al. 2020). However, to our best knowledge, this is the first report of X. arbuscula causing leaf spot on tobacco in China. This leaf spot has the potential to cause serious damage to tobacco in this region that could result in reduced production, consequently disease management of this pathogen should be considered.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...